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Local anaesthetic ropivacaine protects rats from 
myocardial ischaemia/reperfusion injury by inhibition 
of COX-2

Zhou Yu1, Sufang Sun2, Fang Hu1

A b s t r a c t

Introduction: Myocardial ischaemia/reperfusion (I/R) injury is the leading 
cause of morbidity and mortality worldwide. Despite novel advances in ther-
apeutics, the management of myocardial I/R is still an unmet medical need. 
Therefore, in the present study, we have demonstrated the protective effect 
of ropivacaine (RPC) on the myocardial infarction in rats and its underlying 
mechanism. 
Material and methods: Initially, the effect of RPC was determined on the 
infarct size and histopathology of cardiac tissues. The effect of RPC was also 
determined on the levels of various cardiac biomarkers such as creatine 
kinase (CK), creatine kinase MB (CK-MB), alanine aminotransferase (ALT), 
asparganine aminotransferase (AST), and lactate dehydrogenase (LDH), and 
biomarkers of oxidative stress (MDA, SOD, and GSH) and inflammation (tu-
mour necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6). RPC effect 
was also quantified on cellular apoptosis and COX-2 and iNOS expression 
via western blot analysis. The RPC was further docked into the active site 
of COX-2.
Results: It has been found that RPC reduces the improves haemodynamics 
of (LVSP and ± dp/dtmax, and LVEDP), infarct percentage and architecture of 
cardiac tissues of rats. It also reduces the level of studies cardiac injury bio-
markers together with a reduction of oxidative stress (MDA, SOD, and GSH) 
and inflammation (TNF-α, IL-1β, and IL-6). Upon administration of RPC, the 
rate of cellular apoptosis was found to be greatly reduced, with a  reduc-
tion in COX-2 and iNOS expression. In docking analysis, RPC creates van 
der Waals forces and pi-interactions with Tyr381, Arg106, Val102, Leu345, 
Val509, Ser339, Leu338, Val335, Ala513, His75, and Leu517 at the catalytic 
site of COX-2.
Conclusions: Collectively, our results demonstrated that ropivacaine showed 
significant benefit against myocardial ischaemic injury. 

Key words: ropivacaine, oxidative stress, inflammation, apoptosis, docking, 
COX-2.

Introduction

Despite various advances in diagnostics and therapeutics, myocardial 
infarction is still posing a significant threat to mankind. It remains a lead-
ing cause of morbidity and mortality throughout the world [1]. Dramatic 
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changes in lifestyle and eating habits predispose 
a significant number of individuals to myocardial 
infarction across the globe in the coming years [2, 3].  
Particularly in China, as per the Chinese disease 
report published in 2020, cardiovascular diseases 
account for approximately 45% of deaths in China 
[4, 5]. The loss of blood supply to the heart is the 
main factor for myocardial infarction, which leads 
to ischaemia of the cardiomyocytes and subse-
quent necrosis of cardiac tissue [6]. Thus, the ma-
jority of drugs used against myocardial ischaemia 
have been aimed to restore the lost blood supply 
to prevent infarction, by a combination of agents, 
which include vasopressor agents, calcium chan-
nel antagonists, antiarrhythmic agents, antihyper-
tensive agents, angiotensin convertase enzyme 
(ACE) inhibitors, and vasodilator. This signifies 
that none of the single agents can be used to 
control myocardial infarction and associated isch-
aemia. Moreover, the restoration of blood supply 
is not the only factor that can improve the prog-
nosis of patients, but subsequent reperfusion also 
worsens the situation [7, 8]. This causes the injury 
to the myocardial tissues known as myocardial 
ischaemia/reperfusion injury. The generation of 
reactive oxygen species (ROS) in the reperfusion 
stage promotes oxidative stress due to the dispar-
ity between antioxidant defence mechanisms. It 
also promotes lipid peroxidation, tissue infiltra-
tion, alteration in vascular permeability, and pro-
duction of various inflammatory cytokines that 
lead to inflammation [9–11]. Therefore, studies 
have proven the effectiveness of antioxidants and 
anti-inflammatory agents in MI/R injury [12–14]. 

Studies have shown the importance of local 
anaesthetics (LA) as antiarrhythmic agents. Some 
clinically relevant LAs are established antiarrhyth-
mic agents, such as lignocaine, which provides an 
antiarrhythmic effect via inhibition of cardiac so-
dium channel [15], procainamide impairs the myo-
cardial contractile force and lowers cardiac output 
and systemic arterial pressure to provide anti-
arrhythmic effects [16], and prilocaine prevents 
aconitine-induced arrhythmias [17]. Another LA, 
bupivacaine, in isolated cardiac tissues, decreases 
intra-cardiac conduction velocity and contractile 
force and depresses spontaneous sinoatrial activ-
ity. It also decreases cardiac output, myocardial 
contractility, and intra-cardiac conduction velocity, 
as shown by increased PR and QRS durations in 
anaesthetized animals [18]. However, it was later 
found to possess significant cardiotoxicity, which 
limits its use against myocardial diseases [19, 20]. 
Thus, it could be suggested that the antiarrhyth-
mic action of LA is similar to local anaesthesia, in 
that they prevent the generation of action poten-
tial mainly by blocking voltage-gated Na+ chan-
nels, Ca2+ channels, and K+ channels, which results 

in membrane stability [21, 22]. Ropivacaine (RPC) 
is an amide-based non-cardiotoxic local anaes-
thetic used during surgery, labour, and post-oper-
ative pain in adults and children [23, 24]. It blocks 
a  signalling cascade related to tumour necrosis 
factor α (TNF-α), which results in the protection 
of endothelium [25]. It also protects experimental 
acute lung injury induced by bacterial lipopolysac-
charide (LPS) via reduction of inflammation [26, 
27]. The excellent anticancer activity of RPC was 
identified against cervical, gastric, and hepatic 
cancer cells [28–31]. Prompted by the above, the 
present study intended to investigate the effect of 
RPC on myocardial infarction in rats and its under-
lying mechanism. 

Material and methods

Animals

Adult male Sprague-Dawley (8–10 weeks, 
240–270 g) rats were obtained from the institu-
tional animal house and kept in a strict hygienic 
and controlled laboratory environment with an ad 
libitum supply of food and water. The experiment 
was duly approved by the institutional ethical 
committee of The First People’s Hospital of Fuy-
ang Hangzhou and was performed according to 
the national guidelines of animal care and use of 
China. 

Initiation of experimental myocardial 
ischaemia/reperfusion (I/R) injury

To establish myocardial I/R injury, the rats 
were fasted for 12 h before and had free access 
to water. The rats showing abnormal ECG were 
excluded from the experiment, and only normal 
rats were selected for further experiments. The 
selected rats were anaesthetized with 1.5 ml/kg 
sodium pentobarbital (30 g/l) by i.p. subjected to 
the tracheal cannula. The breathing frequency of 
rats was maintained at 50–60 beats per minute 
using an ALC-V model animal ventilator with con-
tinuous monitoring by ECG. A  2-cm longitudinal 
incision was made on the chest of rats, where 
the sternum muscle was fixed with a haemostatic 
clamp. A small orifice was created at the intercos-
tal region of the 2nd–3rd ribs in the left side near 
the sternum. The heart of the rat was exposed af-
ter removing the pericardium, and a needle and 
thread were inserted at the lower end of the left 
atrial appendage to ligate the left anterior de-
scending artery (LAD). The increase in ST-segment 
showed the successful creation of the MI model. 
The successful ligation showed reduced blood 
pressure and prominent ECG changes in rats. Af-
ter reperfusion, local red colour was shown, and 
depression of ST-segment was observed on ECG. 
The chest of the control group rats was opened 
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and threaded without ligation. In the I/R group the 
rats were subjected to ligation of the left ventri-
cle for 30 min, and then reperfusion for 120 min. 
In the treatment group, RPC was administered  
30 min before the ischaemia followed by a 5-min 
interval, and ligation was performed for 30 min 
with subsequent reperfusion for 120 min.

Experimental design

Thirty SD rats were taken and randomly divided 
into 5 groups containing 6 animals in each group. 

– group 1: normal control; 
– group 2: IR rats; 
– group 3: IR + RPC (10 mg/kg);
– group 4: IR + RPC (15 mg/kg); 
– group 5: IR + RPC (20 mg/kg).
Different doses of RPC as indicated above were 

administered immediately through intraperito-
neal injection after being dissolved in 0.9% NaCl 
including 1% DMSO 30 min before the myocardial 
ischaemia models were completed. All rats then 
received their respective treatments once daily un-
til the end of the experiment. Thereafter, the rats 
were killed under anaesthetized conditions using 
urethane (1 g/kg, intra-peritoneally injected) to 
isolate blood. The heart tissues were washed in 
ice-cold normal saline after harvesting. 

Assessment of haemodynamic and cardiac 
function 

The left ventricular systolic pressure (LVSP) 
and left ventricular end-diastolic pressure (LVEDP) 
were recorded at the start of the experiment, be-
fore ischaemia, after 30-min ischaemia, and after 
120-min reperfusion. Values of +dp/dt

max and –dp/
dtmax were calculated using the analysing system 
of a RM6240 multichannel physiological signal de-
tector.

Determination of infarct size

To determine myocardial infarct area the Even’s 
blue-2,3,5-triphenyl tetrazolium chloride (TTC) 
method was used. Briefly, the Evans blue was ad-
ministered into the tail vein, and non-ischaemic 
myocardial tissues was coloured dark blue. At this 
stage, the hearts were excised from the rats and 
weighed after drying on filter paper. The LV was ex-
cised from the heart, weighed, frozen in for 1 h at 
–20°C, and then sliced into 6 slices along the axis. 
These slices were then placed into 1% TTC at pH 
7.4 and incubated at 37°C followed by soaking in 
10% formaldehyde for 15 min. The slices were then 
photographed, and their weight was recorded.

The infarct size was observed as a grey-white 
colour due to the absence of dehydrogenase in 
dead cells, which is unable to stain because dead 
cells cannot reduce TTC to a deep red colour. The 

myocardial ischaemic area was measured as per 
the earlier reported procedure [32].

Determination of serum LDH and CK levels

The serum concentration of myocardial en-
zymes, lactate dehydrogenase (LDH), and creatine 
kinase myocardial band (CK) was recorded using 
marketable assay kits as per the instructions pro-
vided, using a microplate reader at 340 nm. (Nan-
jing Jiancheng Bioengineering Institute, China). 

Evaluation of lipid peroxidation and 
antioxidant enzyme levels

The MDA level, SOD, and GSH activities in the 
heart homogenate supernatant was determined 
as per the supplier’s instructions, using a micro-
plate reader at 560 and 532 nm (Nanjing Jiancheng 
Bioengineering Institute, China).

Determination of TNF-α, IL-1β, and IL-6 
levels in cardiac tissues

The serum level of tumour necrosis factor-α 
(TNF-α) and interleukin (IL) 6 was determined by 
commercial ELISA kits as per the supplier’s instruc-
tions, using a microplate reader at 450 nm (Nan-
jing Jiancheng Bioengineering Institute, China).

Myocardial cell apoptosis

Briefly, the cells were lysed with trypsin and 
washed twice with PBS. 20 μl Annexin-V-FITC la-
belling solution was added to 1 ml buffer solution, 
and then 20 μl PI reagent was added to the re-
sulting cell after lysing. The cells were then kept 
at room temperature without light for 5 min. The 
apoptosis was measured by flow cytometer FACS-
can flow cytometer (Becton Dickinson Company, 
USA) using CellQuest software (ver 4.0; BD Bio-
sciences).

Western blot analysis

The isolated protein was loaded on SDS-PAGE 
(sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis) and shifted onto the (polyvi-
nylidene difluoride) PVDF membrane and probed 
with primary antibody. Following incubation with 
HRP-conjugated goat anti-rabbit IgG for 1 h at 
room temperature, the protein bands were ana-
lysed using an enhanced chemiluminescence re-
agent by using ImageJ v1.42q software (National 
Institutes of Health, Bethesda, MA, USA).

Docking study

The docking study was conducted using rop-
ivacaine as the ligand into the 3D crystal struc-
ture of the COX-2 protein model. The CDOCKER 
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protocol of Discovery Studio (3.0) was selected to 
perform this study. The protein preparation, ligand 
preparation, active site identification, and docking 
were performed using the default setting of the 
CDOCKER protocol as per the manufacturer’s in-
struction. The receptor-ligand interaction of top-
ranked posed of ropivacaine was visualized using 
suitable scripts of the software. Moreover, the 2D 
interaction diagram was constructed using 2D in-
teraction viewer commands.

Ethical approval

The study was approved by the First People’s 
Hospital of Fuyang Hangzhou. All experiments 
were conducted under internationally accepted 
principles for laboratory animal use and care, as 
found in the United States guidelines (NIH publi-
cation no. 85–23, revised in 328 1985).

Statistical analysis

Data were analysed by SPSS 17.0 software and 
expressed as the means ± SD. Differences were 
analysed by one-way analysis of variance (ANOVA) 
followed by Dunnett’s test for individual compari-
sons between each group mean. A p-value of 0.05 
was considered statistically significant.

Results 

The effect of RPC on the haemodynamic 
parameters

The effect of RPC was first investigated on the 
haemodynamic parameters in anaesthetized rats. 
The results are shown in Figure 1. After myocardi-
al I/R injury, the disease control rats showed a de-
creased level of LVSP and ±dp/dtmax, and LVEDP was 
found to be significantly increased as compared to 
the sham. These effects were partly restored to near 
normal after treatment with RPC in a  concentra-
tion-dependent manner. These results were further 
substantiated with ECG analysis of rats following 
myocardial ischaemia-reperfusion injury (supple-
mentary Figure S1). It was found that pre-treat-
ment of RPC caused a significant reduction in the 
ST-segment of rats as compared to IR rats.

The effect of RPC on the myocardial infarct 
area

As shown in Figure 2 A, the infarct size was 
found to greatly increased in the IR group with 
no treatment as compared to the sham. The 
RPC-treated group showed a significant reduction 
in the infarct size of the animals in a  dose-de-
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Figure 1. Effect of RPC on the haemodynamic parameter after MI/R in rats. A – LVSP, B – LVEDP, C – +dp/dtmax,  
D – –dp/dtmax. Data expressed as means ± SDs. ##p < 0.05 compared with sham group; *p < 0.05, **p < 0.01 com-
pared with I/R group
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Figure 2. Effect of RPC on the (A) infarct volume and (B) histopathology of myocardial tissue by H and E analysis. 
Data were expressed as means ± SD. ##p < 0.05 compared with sham group; *p < 0.05, **p < 0.01 compared with 
I/R group
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The effect of RPC on the histopathology of 
cardiac tissues

As shown in Figure 2 B, the IR group showed 
marked necrosis and inflammation of myocardi-
al tissues, which was absent in the sham-treat-
ed group. However, upon administration of RPC, 
these histopathological changes were returned 
near to normal, as confirmed by reduced oedema, 
necrosis, and inflammation in a dose-dependent 
manner. This observation confirmed that RPC 
would be able to mitigate the after-effects of MRI 
in rats.

The effect of RPC on the cardiac injury 
biomarkers

The effect of RPC was further evaluated on 
various biomarkers of cardiac injury, and the re-
sults are presented in Figure 3. It was found that 
the concentrations of various tested biochemical 
mediators (e.g. CK, CK-MB, ALT, AST, and LDH) 
were highly elevated in the IR group, which di-
rectly correlates with the myocardial injury as 
compared to the sham. The RPC-treated group 

showed dose-dependent reduction of the serum 
level of the tested biomarkers as compared to the 
IR group. This signifies the protective behaviour of 
RPC against IR injury.

The effect of RPC on oxidative stress 
biomarkers

The effect of RPC was assessed on numerous 
biomarkers of oxidative stress, as presented in 
Figure 4. The level of MDA was found to be elevat-
ed, together with a reduction in SOD and GSH in 
the IR group, as compared with the sham group. 
Moreover, upon administration of RPC, the level of 
these biomarkers depicting oxidative stress was 
significantly restored approximately near to nor-
mal in a dose-dependent manner.

The effect of RPC on the pro-inflammatory 
cytokines

As shown in Figure 5, the level of cytokines 
such as TNF-α, IL-1β, and IL-6 was found to be 
markedly increased in the IR group as compared 
to the controls. However, the levels of these tested 
cytokines were found to be significantly reduced 
in the RPC-treated group in a  dose-dependent 
manner. Thus, it could be suggested that RPC has 
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Figure 3. Effect of RPC on the serum cardiac bio-
markers. Data were expressed as means ± SDs.  
##p < 0.05 compared with sham group; *p < 0.05, 
**p < 0.01 compared with I/R group

an inhibitory effect on the hyperactivated pro-in-
flammatory cytokines.

The effect of RPC on cellular apoptosis 

As shown in Figure 6, results suggested that, as 
compared to sham, the rate of cell apoptosis was 
found to be highly increased in the IR disease group, 
whereas in the RPC-treated group, the rate of cellu-
lar apoptosis was found to be greatly reduced.

The effect of ropivacaine on COX-2 and 
iNOS by western blot analysis

As expected, the IR group with no treatment 
showed an elevated level of these 2 proteins in 

comparison to the sham. The RPC treated group, 
in a  dose-dependent manner, showed a  drastic 
drop in the level of COX-2 and iNOS (Figure 7). 
These results suggest that RPC might exert a car-
dioprotective effect via strong anti-inflammatory 
activity.

Docking analysis of ropivacaine with COX-2

In docking analysis, RPC was found to be deeply 
buried into the active site of the COX-2 protein 
structure by interacting with key catalytic residues 
(Figure 8). To further elaborate these interactions, 
a 2D interaction diagram of RPC with COX-2 was 
generated and displayed in Figure 9. It was found 
that RPC creates numerous interactions with 
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Figure 4. Effect of RPC on the various indices of 
oxidative stress. Data were expressed as means ± 
SDs. ##p < 0.05 compared with sham group; *p < 
0.05, **p < 0.01 compared with I/R group
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Figure 6. Effect of RPC on the cellular apoptosis. 
Data were expressed as means ± SDs. ##p < 0.05 
compared with sham group; *p < 0.05, **p < 0.01 
compared with I/R group

 Sham IR  IR + RPC
   10 mg/kg 20 mg/kg 30 mg/kg

A

104

103

102

101

100

104

103

102

101

100

 100 101 102  103 104

FITC
 100 101 102  103 104

FITC
 100 101 102  103 104

FITC
 100 101 102  103 104

FITC
 100 101 102  103 104

FITC

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

PI

 Sham IR 10 mg/kg 20 mg/kg 30 mg/kg

    IR + RPC

B
60

40

20

0

Ap
op

to
si

s 
ra

te
 (

%
)

 Sham IR 10 mg/kg 20 mg/kg 30 mg/kg

    IR + RPC

 Sham IR  IR + RPC
   10 mg/kg 20 mg/kg 30 mg/kg

 Sham IR  IR + RPC
   10 mg/kg 20 mg/kg 30 mg/kg

 Sham IR 10 mg/kg 20 mg/kg 30 mg/kg

    IR + RPC

B

A

C
5

4

3

2

1

0

4

3

2

1

0

Re
la

ti
ve

 C
O

X-
2 

le
ve

l/
β-

ac
ti

n

Re
la

ti
ve

 iN
O

S 
le

ve
l/
β-

ac
ti

n

Figure 7. Effect of RPC on the expression of COX-2 and iNOS by western blot analysis. Data were expressed as 
means ± SDs. ##p < 0.05 compared with sham group; *p < 0.05, **p < 0.01 compared with I/R group

COX-2

β-actin

iNOS

β-actin



Local anaesthetic ropivacaine protects rats from myocardial ischaemia/reperfusion injury by inhibition of COX-2

Arch Med Sci 9

Figure 8. 3D orientation of RPC (shown in brown ball and stick) into the catalytic site of COX-2 (shown in ribbon)
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Figure 9. 2D orientation of RPC into the catalytic site of COX-2

neighbouring residues via the formation of many 
van Der Waals and pi-interactions with Tyr381, 
Arg106, Val102, Leu345, Val509, Ser339, Leu338, 
Val335, Ala513, His75, and Leu517. The inter-
action shown by RPC was found to be similar to 
previous studies [33]. These strong interactions of 
RPC with the catalytic site of COX-2 provide the 
basis for its inhibitory activity against COX-2.

Discussion

Myocardial ischaemia/reperfusion injury is 
a devastating illness that impacts millions of in-

dividuals, either directly as a patient or indirectly 
as a  caregiver or family member of an affected 
individual. It creates a huge economic burden on 
the patients and their families due to long hospi-
tal stays. Thus, new agents are continuously de-
veloped towards finding a  cheap and economic 
way to deal with it. In our present study, we have 
successfully demonstrated the protective effect 
of ropivacaine against experimentally induced 
myocardial ischaemia/reperfusion injury in SD 
rats. We have selected male SD rats because ex-
tra oestrogen treatment may result in reduced 
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infarct size [34]. Secondly, accumulating evidence 
suggests that the infarct area in females is small-
er than in males relative to body mass [35]. It has 
also been found that extra preconditioning and 
other cardio-protective approaches do not have 
any potential beneficial effect in females [36]. 
The interactions between cardioprotective sig-
nalling pathways in female animals and pre-and 
post-conditioning signalling pathways might be 
the reason for this effect. Infarction is the main 
prognostic factor in I/R injury. Studies showed 
that many novel agents provide a beneficial ef-
fect against IR injury via reduction of the infarct 
size. It has been shown that the infarct reducing 
the ability of any agent is directly correlated with 
its protective effect against myocardial IR injury 
[37–39]. Initially, the effect of RPC was investigat-
ed on the haemodynamic parameter of MI/R inju-
ry in rats. It was found that RPC restored the level 
of LVSP and ±dp/dt max, and LVEDP near to nor-
mal in a  concentration-dependent manner. The 
ST-segment elevation is a characteristic hallmark 
of ischaemia/reperfusion injury, thus agents re-
ducing ST-segment provide a  beneficial effect 
against MI/R injury [40, 41]. In ECG analysis, RPC 
reduces ST-segment in rats. The effect of RPC 
was investigated on the infarct size of IR animals. 
It has been found that RPC significantly reduces 
infarct size. Accumulating evidence suggests that 
the utility of histopathological examination of 
myocardial tissue is a  significant parameter for 
the assessment of the protection of chemicals 
against IR injury. It is a widely accepted method-
ology that allows the investigator to examine the 
cardiac tissue to assess the rate of improvement 
after the treatment [42–46]. Thus, we aimed to 
analyse the histopathology of cardiac tissues by 
H and E staining after administration of RPC to 
macroscopically visualize its cardioprotective ef-
fect. It was found that RPC causes improvement 
in the cardiac histopathology of animals. Cardiac 
injury biomarkers (LDH and MB) play a significant 
role in diagnostics, which allows the planning of 
a therapeutic regime during the time of injury or 
after the injury. It provides a  suitable and effi-
cient way to evaluate heart function. Compelling 
studies have suggested that after I/R injury the 
levels of these biomarkers were highly deregulat-
ed in direct proportion to the extent of I/R injury 
[47–49]. In the present study, RPC caused a sig-
nificant reduction in cardiac injury biomarkers. 
Various evidence suggests that oxidative stress 
has a  highly deleterious effect on the recovery 
from myocardial ischaemia/reperfusion injury. It 
induces the production of an excessive amount 
of reactive oxygen species to the impaired an-
tioxidant system. These radicals are supposed 
to cause the annihilation of proteins, DNA, and 

lipids, simultaneously damaging the membrane 
to induce cell death [50–52]. Thus, agents im-
proving the antioxidant system showed benefit 
against myocardial ischaemia/reperfusion. The 
RPC causes significant improvement of the anti-
oxidant system after I/R injury, which was found 
following earlier studies. Inflammation in the 
hallmark of myocardial I/R injury. It is fuelled by 
the production of reactive oxygen species, which 
in turn promote oxidative stress and initiate 
a cascade of inflammatory response via recruit-
ment of various pro-inflammatory cytokines [53, 
54]. In the present study, RPC caused a reduction 
of the serum level of various pro-inflammatory 
cytokines. Myocardial apoptosis is greatly in-
creased after IR injury and leads to the necrosis 
of myocardial tissue. Therefore, it is important to 
assess the effect of RPC on myocardial tissue [55, 
56]. Towards this end, annexin V-FITC/PI double 
staining and flow cytometry was undertaken to 
analyse the effect of RPC on the apoptosis of 
myocytes, and it was found that RPC reduced 
apoptosis in a dose-dependent manner. To com-
prehend the underlying mechanism of the strong 
anti-inflammatory effect of RPC, which might be 
the reason for its protective effect against IR inju-
ry, we next aimed to investigate its effect on the 
expression of COX-2 and iNOS by western blot 
analysis. These were believed to play a vital role 
in the progression of inflammation after injury 
[57, 58]. It was found that RPC causes a drastic 
decrease in the level of COX-2 and iNOS. Docking 
is a widely recognized and powerful tool in drug 
discovery to define the probable structural con-
tacts of ligands with the protein of interest. It ac-
celerates the process of drug discovery and helps 
in the discovery and optimization and preclinical 
tests [59–63]. Therefore, to provide the basis for 
strong COX-2 inhibitory activity of RPC, it was 
docked onto the catalytic site of the 3D-crystal 
structure of COX-2. These strong interactions of 
RPC with the catalytic site of COX-2 provide the 
rationale for its inhibitory activity against COX-2. 
Further research is required to investigate these 
in larger, longer-term studies.

In conclusion, our study has demonstrated 
the usefulness of ropivacaine against myocardial 
ischaemia/reperfusion injury. Ropivacaine showed 
a protective effect against myocardial injury possi-
bly via amelioration of oxidative stress and apop-
tosis of myocardial tissue. Ropivacaine reduces 
inflammation in animals possibly via strong inhi-
bition of COX-2 and iNOS. However, more studies 
are needed to provide the clinical basis of ropiva-
caine in myocardial injury.
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